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Abstract: 

We summarize historic New York City (NYC) climate change trends and provide the latest scientific analyses on 
projected future changes based on a range of global greenhouse gas emissions scenarios. Building on previous 
NPCC assessment reports we describe new methods used to develop the projections of record for sea level rise, 
temperature, and precipitation for the City, including using projections across multiple emissions pathways and the 
issue of the “hot models” associated with CMIP6 and their potential impact on NYC’s climate projections. We 
describe the state of the science on temperature variability within NYC and explain both the large scale and regional 
dynamics that lead to extreme heat events, as well as the local physical drivers that lead to inequitable distributions of 
exposure to extreme heat. We identify three areas of tail risk and potential for its mischaracterization, including the 
physical processes of extreme events and effects of a changing climate. Finally, we review opportunities for future 
research, with a focus on the hot model problem and the intersection of spatial resolution of projections with gaps in 
knowledge in the impacts of the climate signal on intra-urban heat and heat exposure.  
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1 Chapter Summary  
This chapter summarizes historic New York City (NYC) climate change trends and provides the latest state-of-the-art 
science information on potential future changes based on a range of global greenhouse gas emissions scenarios. 
This chapter further describes the drivers and consequences of climate change in NYC related to sea level rise, 
extreme heat, and precipitation. Projections of annual averages, the frequency of extreme temperatures and 
precipitation are presented, refining methods used in previous New York City Panel of Climate Change (NPCC) 
reports.  

1.1 Key Messages 

Key Message 1 - NPCC4 analysis of the impact of hot models on the CMIP6 ensemble found no statistically 
significant difference between the temperature and precipitation projections of record and alternative projections that 
do not include models with equilibrium climate sensitivity outside the expected range. The CMIP6 climate model 
ensemble used to create the temperature and precipitation projections of record contains three models that display 
higher-than-expected sensitivity of temperatures to greenhouse gases. These so-called “hot models” lead to higher 
global mean temperatures. However, the impact of high climate sensitivity appears small with our approach to 
developing local projections for NYC. Nevertheless, more research is needed to better understand (1) the impact of 
the high climate sensitivity on the representation of key large scale climate processes, (2) the model physics leading 
to high sensitivity in the first place, and (3) the constraints on the planet’s equilibrium climate sensitivity.  

Key Message 2: The high tail end of sea level rise will be governed by the future stability of the ice sheets, and in 
particular, that of the West Antarctic Ice Sheet (WAIS), with ~3 m of SLR potential if all its marine-based ice melted, 
and also that of the Greenland Ice Sheet (~7 m SLR equivalent) throughout the 21st century and beyond. Troubling 
signs of ice shelf thinning and ocean warming around WAIS and an approaching temperature tipping point over 
Greenland raise the possibility of faster and higher sea level rise than projected by most climate models, increasing 
the risks associated with coastal flooding. Additional research is needed to gain a better understanding of all the 
processes governing ice sheet behavior with rising temperatures. Stakeholders concerned with long-term planning 
need to examine plausible scenarios at the extreme upper tail of the sea level rise distribution. 

Key Message 3: While occurrence of extreme heat events in NYC is governed in great part by climatic events taking 
place at large spatial scales, local urbanization patterns play a key role in the spatial distribution of temperatures 
within the city. These local patterns, which include a range of factors like distribution of green spaces and urban 
geometry, play the most significant role in the generation of physical process that lead to the urban heat island (UHI). 
Moreover, extreme heat events exacerbate this intra-urban excess temperatures, increasing exposure to deadly heat 
of populations without access to adaptive measures and cooling infrastructure (e.g., cooling centers, tree shade). 
Future work is needed to assess the impact of a warming climate on intra-urban heat variability in order quantify the 
effect of climate change on spatial inequities of heat exposure.  

2 Introduction  
While every NPCC assessment report has included a chapter on the state of climate science and projections for 
NYC, this chapter includes a strengthened emphasis on the equity implications of climate change adaptation 
(Boeckmann & Zeeb, 2016; Foster et al., 2019). In addition, this chapter addresses emerging issues related to 
higher-than-expected equilibrium climate sensitivity (ECS) in several ensemble members from the 6th Climate Model 
Intercomparison Project (CMIP6), which simulate higher than expected global mean temperatures. Finally, the 
chapter describes the changing tail and compound risks associated with climate change. 

2.1 Chapter Scope and Context  
Anthropogenic climate change is fundamentally linked to the rapid increase in greenhouse gas (GHG) emissions 
propelled by the Industrial Revolution and the European colonial systems that enabled it. “Raw materials from 
colonies across the British Empire fueled the Industrial Revolution” (Easton et al., 2022), land dispossession and 
forced migration facilitated colonial expansion, and chattel slavery provided unpaid labor to build the British colonies 
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as well as the new American nation1 (Baker, 2019; Foster et al., 2024, sec. 3.1; Munshi, 2022; Park, 2022). In 
addition, the "political arithmetic" of global trade prompted extreme extraction from the New York metropolitan 
region's biodiversity into the Atlantic world trading system (Tchen, 2001). Consequently, humanity’s climate crisis has 
its roots in land dispossession, forced migration, as well as human and natural resource extraction orchestrated by 
European colonial powers. Furthermore, the tremendous variability in vulnerability to climate change (among and 
within regions) is driven by “patterns of intersecting socio-economic development, unsustainable ocean and land use, 
inequity, and marginalization” as well as “historical and ongoing patterns of inequity such as colonialism” and 
structural racism (e.g. Home Owners Loan Corporation redlining in NYC’s five boroughs) (Braveman et al., 2022; 
Egede et al., 2023; Farrell et al., 2021; Lynch et al., 2021; Pörtner et al., 2022; Sultana, 2022). 

 

 

Figure 1: Schematic Depicting the Relationship between Marginalization, Vulnerability, and Resilience. Source: Field et al.(2014) 

Vulnerability to climate hazards and stressors (Figure 1) (Field et al., 2014, p. 49) is unequally distributed across NYC 
as “high levels of social vulnerability are consistently found in areas with lower incomes”, aging populations, and 
higher proportions of Black and Latinx/Hispanic residents (Foster et al., 2019). For example, NYC is among urban 
hotspots in the country where ambient temperatures can be 5 to 20 degrees Fahrenheit hotter in neighborhoods with 
low income households and more residents of color (Hoffman et al., 2020). NYC also has the largest number of 
affordable housing units exposed to extreme water levels in the country (Buchanan et al., 2020).  

Local Law 42 (2012) mandates that the New York City Panel on Climate Change (NPCC) meet at least twice a year 
for the purpose of (i) reviewing the most recent scientific data related to climate change and its potential impacts on 
the City’s communities, vulnerable populations and public health2 as well as the City’s natural systems, critical 
infrastructure, buildings and economy; and (ii) advising municipal staff (e.g. the Mayor’s Office of Climate and 
Environmental Justice) as well as the NYC Climate Change Adaptation Task Force (CCATF). Further, the Panel3 is 
mandated by LL42 to make recommendations regarding (i) the near-, intermediate and long-term quantitative and 

 
 
1 The U.S. share of global GHG emissions is currently around 15 percent (Sachs, 2020). 
2 Vulnerable populations are defined here as persons or communities at increased risk of harm as a direct or indirect consequence 
of climate change based on one or more of the following risk factors: (i) proximity to disproportionally impacted areas; (ii) age, 
including senior citizen or minor status; (iii) income level; (iv) disability; (v) chronic or mental illness; and (vi) language. Public health 
is defined here as impacts on physical health, mental health and social well-being and public or private services that treat and 
prevent disease, prolong life and promote health. 
3 The Panel is currently led by a team of four co-chairs who possess a broad spectrum of disciplinary expertise including climate 
science, demography, civil and environmental engineering, geography, vulnerability analysis, global change, architecture, and urban 
planning. Both the full NPCC and its leadership team were selected to ensure a diversity of backgrounds, research disciplines, and 
fields of technical practice. 
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qualitative climate projections (i.e. “projections of record”) for the City of New York; and (ii) a framework for 
stakeholders to incorporate climate projections into their planning processes (Rosenzweig & Solecki, 2015).  

In 2023, NPCC published a brief assessment report that aimed to mirror its 2013 report See Rosenzweig et al., 
(2013). It establishes new sea level rise projections of record for NYC and introduces interim climate projections 
associated with temperature and precipitation. Further, the climate science synthesis focused on sea level rise that is 
presented by NPCC4 in NYC Climate Risk Information 2022: Observations and Projections (Braneon et al., 2024) 
addresses recommendations from NPCC3 to (a) “monitor trends in sea level rise and in the processes contributing to 
sea level rise in the New York metropolitan region”, (b) “study trajectories of potential sea level rise that continue after 
2100 in light of the sea level rise commitment on longer timescales”, and (c) “examine the consequences of long-term 
sea level rise scenarios on coastal flooding, including those stemming from low-probability, high-end scenarios” 
(Gornitz et al., 2019).  

This chapter presents the finalized projections of record4 associated with temperature and precipitation. These 
projections use new methods that derive expected changes in NYC’s temperature and precipitation from global 
climate models, both in terms of average conditions as well as climate extremes. The projections use the newest 
generation of climate models from CMIP6, which include significant advances in the representation of the process 
that form the climate system and the impacts of anthropogenic emissions. New methods for downscaling these global 
projections are introduced which account for changes to not only the mean state of local climate but also in the 
variability of temperature and precipitation.  

The chapter also describes potential impacts of climate change on intra-urban heat variability. While the chapter does 
not update the projections of NPCC3 that mapped temperatures at the neighborhood scale for select future periods of 
time (González et al., 2019), it describes the local and global drivers of extreme heat in the city. Moreover, new 
projections of compound heat and humidity are presented. A new section also describes growing evidence of global 
climate change leading to stronger urban heat islands (UHIs) as well as physical interactions that may exacerbate the 
City’s UHI.  

2.2 Chapter Organization 
This chapter contains three sections that describe changing climate risks in NYC. Section 3 builds on previous NPCC 
assessment reports by describing the latest climate science and data, while describing new methods used to develop 
the projections of record for sea level rise, temperature, and precipitation for the City. This section also describes the 
approach followed by NPCC4 for using projections across multiple emissions pathways. Finally, Section 3 also 
discusses the issue of the “hot models” associated with CMIP6 and their potential impact on NYC’s climate 
projections. Section 4 describes the state of the science on temperature variability within the city. This section 
explains both the large scale and regional dynamics that lead to extreme heat events, as well as the local physical 
drivers that lead to inequitable distributions of exposure to extreme heat. Section 5 describes the physical processes 
and the impact of a changing climate on tail risks and extreme events. Finally, Section 6 reviews opportunities for 
future research, with a focus on the hot model problem and the intersection of spatial resolution of projections with 
gaps in knowledge in the impacts of the climate signal on intra-urban heat and heat exposure. 

3 Sustained assessment and CMIP6 
This report follows prior NPCC assessments that developed climate projections for NYC. Presented here is a 
summary of the methods and how the key components of the projections have changed over time. Braneon et al., 
(2024) and the New York State Climate Impacts Assessment (NYSCIA) (New York State Energy Research and 
Development Authority, 2024) provide a more detailed description of the analytic methodology. The NYSCIA contains 
a detailed breakdown of the differences in each "element" of the projections (e.g., baseline period, number of models 
used, emissions scenarios). 

 
 
4 Based on climate analyses, regional and global trends, and a review of scientific literature, NPCC confirms which climate 
projections of temperature, precipitation, sea level rise, and coastal flooding (i.e. projections of record) are most appropriate for use 
in resiliency planning for the city and region. 
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3.1 Identifying the Differences/Updates in the Climate Projections 
Changes in the projections in this NPCC4 report include 1) the use of new emissions scenarios and global climate 
models, 2) updated historical baseline period and future time slices for projections, and 3) new methods for 
projections of quantitative extreme events and sea level rise. 

3.1.1 Emissions scenarios and global climate models  
The newest climate science available is associated with Coupled Model Intercomparison Project Phase 6 (CMIP6); its 
shared socio-economic pathways (SSPs) are part of a new scenario framework (Ebi et al., 2014; O’Neill et al., 2016), 
established by the climate change research community to facilitate the integrated analysis of future climate impacts, 
vulnerabilities, adaptation, and mitigation. The updated climate projections for NYC utilize data (both monthly and 
daily) from the CMIP6 ensemble of global climate models. For a specific description of the methods used, refer to 
Braneon et al. (2024).  

CMIP6 global climate models have, in general, a higher spatial resolution than CMIP5 (the previous iteration of 
models utilized by the IPCC); grid box sizes for many models are on the order of approximately 70 miles by 70 miles 
horizontally, whereas a common resolution for CMIP5 was approximately 140 miles by 140 miles. CMIP6 models also 
feature more advanced characterization of key system components, such as stratospheric chemistry, and more 
dynamic coupling across system components. The climate sensitivity—a measure of how sensitive global average 
temperatures are to changes in greenhouse gas concentrations—is higher in approximately one-fourth of CMIP6 
models than in CMIP5 and earlier CMIP generations (Zelinka et al., 2020) In addition to presenting projections for 
NYC based on CMIP6, this chapter also examines the potential impact of these so-called “hot models”.  

3.1.2 Historical base period and future timeslices  
The historical baseline periods for the climate projections are updated for NPCC4. Projections of temperature are 
expressed relative to a baseline period of 1981 to 2010 for temperature and precipitation while the baseline period is 
1995 to 2014 for sea level rise. In addition, projections are now provided for each decade from the 2030s through the 
2080s (See Braneon et al (2024) for more details). The methods still use a 30-year average for the time periods (10-
year average for sea level rise) to reduce the noise of year-to-year variability while the climate change signal remains. 

3.1.3 New methods for extreme events and sea level rise 
For the projections in NPCC4, new methodologies are used for quantitative extreme events and sea level rise.  Full 
details of these methods can be found in Braneon et al., (2024), however, this section identifies some of the key 
updates. 

In NPCC4, quantile mapping is used to combine the daily outputs from the global climate models (GCMs) with 
historical climate data to develop future climate projections that include daily extremes like hot days, defined as days 
with maximum temperature above 90°F and days with heavy rainfall, defined as days with at least 1 inch total 
precipitation. Quantile mapping represents an advance from prior NPCC work, which used the delta method based on 
monthly rather than daily data from GCMs. Whereas the delta method largely retains the distribution of temperatures 
from the historical observed data--only adding a mean, or 'delta' uniformly to the historical data, quantile mapping of 
daily data retains changes in the distribution of temperatures with climate change, as simulated by GCMs. For 
example, if a model has its top one percent of hottest days warming more than other days, quantile mapping will lead 
to projections with larger increases in hot day frequency and intensity than would be generated by the delta method 
(Panofsky & Brier, 1968). 

The downscaling technique used in this work is one of many used in climate research, and while all are generally 
considered to render 'value added' projections (by addressing GCM biases and adding finer spatial resolution), the 
methods do not produce identical results. The downscaling technique used here should not be considered inherently 
superior to other possible downscaling choices. 

The development of a comprehensive approach to sea level rise in the latest IPCC report (AR6) offered the 
opportunity to rely on methods and data generated by the IPCC rather than recreating data already available.  For 
NYC, outputs are taken directly from the IPCC data set for the Battery for three scenarios; SSP2-4.5-medium 
confidence, SSP5-8.5-medium confidence, and SSP5-8.5-low confidence (Kopp et al., 2023). Because this data is 
available for years at the start of each decade (e.g., 2050), we interpolated the values to the middle year (e.g., 2055) 
of the decade, to align with the decadal time periods (e.g., the 2050s) previously used for NPCC sea level rise 
projections. Sea level rise projections are computed for all decades from the 2030s to the 2090s and then 2100 and 
2150. 
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3.1.4 Additional methodological changes and advances 
The observed rate of mean sea level rise of 4.3 ± 1.08 mm/yr (1992-2021) at the Battery in NYC (National Oceanic 
and Atmospheric Administration (NOAA), 2023; National Oceanography Centre, 2023) remains higher that of the 
observed rate of global mean sea level rise (GMSLR) of 3.3 [2.8-2.2] mm/yr (1993-2018) (Fox-Kemper et al., 2021, 
tbl. 9.5). This higher relative, or local rate of sea level rise (RSLR) derives from a combination of glacial isostatic 
adjustment (GIA) related subsidence, enhanced thermal expansion, and increasing distant land ice mass losses (see 
also Braneon et al., 2024; Section 4.1.1).New hotspots of highly localized land uplift and subsidence in NYC that 
cause variations in RSLR have been recently identified by interferometric synthetic aperture radar and other satellite 
data (Buzzanga et al., 2023). Most of these hotspots are situated on land fill or on heavily modified ground. The very 
localized variations in RSLR may produce highly differential coastal flood risk across the city. In addition, there is 
some evidence that the Atlantic Meridional Overturning Circulation (AMOC)  weakening in the future, which would 
lead to higher RSLR along much of the East Coast and increase the likelihood of higher coastal flooding (Little et al., 
2019; Volkov et al., 2023). In addition, the AMOC plays a role in a “domino effect” of tipping points, which may add 
uncertainty its role in RSLR (Wunderling et al., 2021) and other changes throughout the climate system. 

Sea level rise and coastal flooding pose growing risks to the population and major economic assets along and 
beyond NYC's waterfront. Rising sea level is leading to an increased frequency of coastal flooding in New York City 
and elsewhere in the United States (e.g. Sweet et al., ( 2022). Future sea level rise will exacerbate high tide flooding 
as well as the destruction caused by storm surges (Strauss et al., 2021). 

 

 

Figure 2: Projected Timing of Selected Sea-Level Rise Milestone Under Different Scenarios at The Battery in New York City.  Thick 
bars show 17th-83rd percentile ranges, and black circles show median value. Thin bars also show 5th–95th percentile ranges for 
SSP1-2.6 Low Confidence and SSP5-8.5 Low Confidence scenarios that indicate the indicate the potential impact of deeply 
uncertain ice sheet processes. Source: National Aeronautics and Space Administration (2023)  

While the “ambiguity” associated with ice-sheet instability limited the ability of NPCC3 (and earlier Panels) to 
generate quantitative sea-level projections of record (Gornitz et al., 1982; Kopp et al., 2023; Mercer, 1978; 
Oppenheimer et al., 2019) that explicitly account for this, NPCC4 utilizes sea level rise projections from the National 
Aeronautics and Space Administration (NASA) Sea Level Projection Tool (Fox-Kemper et al., 2021; Garner et al., 
2021; National Aeronautics and Space Administration, 2023) to present a broad range of plausible outcomes that 
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explicitly account for ice sheet processes5 (Bamber et al., 2019; DeConto et al., 2021) that are deeply uncertain 
(Bassis, 2021; Braneon et al., 2024). The tool allows users to view both global and regional sea level projections from 
2020 to 2150, along with how these projections differ depending on future scenario or warming level (See Figure 2 
from NASA (2023).  

While the sea level rise projections available from the NASA Sea Level Projection Tool for NYC are consistent with 
the assessment of equilibrium climate sensitivity (ECS) described in IPCC’s Sixth Assessment Report (AR6) (See 
Box 9.3 and Sections 9.6.3 and 9.7 in Fox-Kemper et al., (2021), some members of the climate science community 
(e.g. Hausfather et al., (2022) have begun developing different approaches (e.g. “model culling” or rejecting some 
models’ projections) for projecting local temperature and precipitation changes that explicitly address the fact that 
some GCMs’ transient warming lies outside the bounds of the IPCC AR6 assessed “likely” range of ECS or transient 
climate response (TCR) (Table 1 in Rypdal et al., (2021) shows a TCR span of 1.3–3.0°C in the CMIP6 experiments). 
A consequential aspect of the model culling approach is that “rejecting models is akin to applying a binary weighting 
scheme to the CMIP6 ensemble, with zero weight applied to the culled models”, and model democracy” (e.g. equal 
weighting) for the remaining ensemble members (Massoud et al., 2023). As model culling (or unequal weighting) 
results in eliminating (or significantly reducing) consideration of the information provided by a significant portion of the 
model ensemble, NPCC4 has elected to conduct data-driven analyses to understand if the so-called “hot model” 
problem (Hausfather et al., 2022) has a statistically significant impact on the bias-corrected temperature and 
precipitation projections presented in Braneon et al. (2024; Massoud et al., 2023; Weigel et al., 2010). 

“In climate science, one of the most fundamental pursuits is determination of the significance of differences between 
two states or sets of conditions” (Lanzante, 2021). Multiple statistical tests were conducted with the ensemble of 
GCM means that is used to develop the temperature and precipitation projections that are found in Braneon et al., 
(2024). Kolmogorov–Smirnov tests results reveal that there is no statistically significant difference at the significance 
level of 0.01 for any of the metric distributions when the three GCMs with TCR values greater than 2.2 degrees C are 
removed (See Table 1 for 2080s results). NPCC4 affirms the temperature and precipitation projections presented 
here (and also in Section 6.4 of (Braneon et al., 2024) as projections of record for the City of New York. See 
Appendix A for boxplots comparing 960-member ensembles (16 GCMs x 2 scenarios x 30 years) of annual 
projections with 780-member ensembles (13 GCMs x 2 scenarios x 30 years) that exclude GCMs with TCR values 
greater than 2.2 degrees C. 

Table 1. Difference in ensemble means for the 2080s for temperature and precipitation metrics. Kolmogorov-Smirnov (KS) tests 
comparing the 32-member ensemble (16 GCMs x 2 scenarios) of model mean projections (i.e. mean of 30 years of annual 
projections) for the 2080s with a 26-member ensemble (13 GCMs x 2 scenarios) that excludes GCMs with TCR values greater than 
2.2 degrees C. No statistically significant differences are found for any metric at the 0.01 level. 

 
 
5 To indicate the potential impact of deeply uncertain ice sheet processes, about which there is currently a low level of agreement 
and limited evidence, low confidence projections are also provided for SSP1-2.6 and SSP5-8.5. For both the Greenland and 
Antarctic ice sheets, the low confidence projections integrate information from the Structured Expert Judgement study of Bamber et 
al. (2019). For the Antarctic ice sheet, the low confidence projections> projections also incorporate results from a simulation study 
that incorporates Marine Ice Cliff Instability (DeConto et al., 2021). 

Metric Decade Difference in 
Means 

Days/yr >= 90 degrees F 2080s 4.12 

Days/yr >= 95 degrees F 2080s 3.43 

Days/yr >= 100 degrees F 2080s 2.65 

Days/yr <= 32 degrees F 2080s -4.64 

Days/yr >= 1 inch 2080s 0.24 

Days/yr >= 2 inches 2080s 0.08 

Days/yr >= 4 inches 2080s 0.03 
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3.1.5 Temperature trends and projections  
Annual average air temperatures, as measured by long-term ground stations in the Global Historical Climatological 
Network – daily (GHCN-daily) (Menne et al., 2012) have increased at stations across the NYC metropolitan area over 
the last 70 years. Although the data records' length varies between stations, the warming rates are similar. During 
their overlapping period of observations (1949-2022), annual mean temperatures have increased at rates between 
0.24°F to 0.41°F per decade (Figure 3) for the period where observations overlap across the stations. This increasing 
trend can be observed across the entire observation record of each station, with Central Park temperatures growing 
at a pace of 0.28°F per decade since 1870. Both daily minimum and maximum temperatures have increased 
throughout this period (Figure 4). In general, nighttime minimum temperatures have increased at faster rates than 
daytime maximum, except at John F Kennedy (JFK) Airport. As in annual average temperatures, similar trends are 
observed in both daily minima and maxima when the records are extended beyond their temporal overlap, with 
Central Park station daily minimum and maximum growing by .26 and .31 °F per decade since the first observations 
in 1870. 

 

Figure 3. Annual mean temperature recorded at Central Park, LaGuardia, and JFK Airports (1949-2022). Solid line represents linear 
trend. *Trend is significant at the 99% confidence level tested with a non-parametric Spearman Correlation. Source: Global 
Historical Climatology Network-daily. 
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Figure 4. Annual daily minimum (left column) and maximum (right column) temperature recorded at Central Park, LaGuardia, and 
JFK Airports (1949-2022). Solid line represents linear trend. *Trend is significant at the 95% confidence level tested with a non-
parametric Spearman Correlation. Source: Global Historical Climatology Network-daily 

Climate change is extremely likely to bring warmer temperatures to the New York metropolitan region. Global climate 
models predict mean annual average temperatures increases between 2.7 to 3.9°F by the 2030s, 4.0 to 6.0°F by the 
2050s, and 5.6 to 9.8 °F by the 2080s relative to a baseline period of 1981 to 2010. The total number of hot days and 
nights in NYC is projected to increase between 15 to 52 days by midcentury. The frequency of heat waves is 
expected to increase by a factor of 2 to 4 times the current baseline, with their average duration increasing by up to 
50% by the 2050s. By the 2080s, the projected number of days per year with maximum temperatures at or above 82 
degrees F (which occur on average 69 days per year in the current climate) nearly doubles. By the 2080s, the upper 
end of projected number of days per year with minimum temperatures at or above 80 degrees F (which occur on 
average about 1 day per year in the current climate) increases 10-fold. 

3.1.6 Heat index projections 
In order to maintain biological function, humans must keep a body temperature of close to 37°C (98.6°F). However, 
humans gain heat through a variety of mechanisms such as metabolic activity and from interactions with the 
environment. In order to maintain body temperatures near 37°C, the human body sheds heat via convection, 
evaporation of surface sweat, and respiration. Of these, evaporation is most important as it accounts for close to 75% 
of heat dissipation (Koppe et al., 2004). However, evaporation of surface skin sweat is dependent on the properties of 
moist ambient air. As ambient air around a person becomes saturated with moisture, evaporation becomes more 
difficult, leading to reduced heat dissipation. This reduced cooling capacity can be particularly dangerous during 
periods of extreme heat, when humans are most reliant on evaporation for shedding heat.  



 
New York City Panel on Climate Change 4th Assessment 
Tail Risk, Climate Drivers of Extreme Heat, and New Methods for Extreme Event Projections 

 

 
Interim Report for Public Release 11 

Although there are several methods to quantify the impact of combined temperatures and humidity on human 
wellbeing, the United States National Weather Service (US NWS) relies on the heat index as defined by Steadman 
(1979) and codified into an equation by Rothfusz (1990)6. 

Table 2 shows the baseline (1981-2010) and projected changes to the occurrence of extreme heat index days 
throughout the 21st century. In the recent historical record, NYC experiences, on average, 38 and 6 days with heat 
index above 85°F and 95°F, respectively. These heat index thresholds are labeled by the US NWS as periods where 
Caution and Extreme Caution are warranted. By mid-century (2050s), the number of heat days with heat index larger 
than 95°F are projected to increase sixfold to 37. (the 50th percentile value of the model-based projections). 
Meanwhile, end of century days with heat index above 95°F increase close to a factor of 9 (50th percentile).  

These results build on work presented in NPCC3 (González et al., 2019) by introducing a full set of projections of 
record of compound humid heat occurrence for the first time in NPCC. These projections leverage sub-daily data 
from CMIP6 and the quantile mapping method used for the other projections on model air temperatures and relative 
humidity estimates to present data consistent with projections of temperature, precipitation, and their extremes.  

Table 2. Projections of heat index days per year for 30-year periods centered around the 2040s, 2050s, 2060s, 2070s, and 2080s.  

 Baseline 
Period 
(1981 - 
2010) 

10th 25th 50th  75th 90th 

2030s       

Days with HI > 85°F 38 57 61 69 74 84 

Days with HI > 95°F 6 17 18 23 29 37 

2040s       

Days with HI > 85°F 38 60 67 77 84 92 

Days with HI > 95°F 6 19 23 29 36 44 

2050s       

Days with HI > 85°F 38 68 74 83 93 102 

Days with HI > 95°F 6 23 30 37 46 57 

2060s       

Days with HI > 85°F 38 72 81 92 100 112 

Days with HI > 95°F 6 27 33 46 54 70 

2070s       

Days with HI > 85°F 38 77 86 97 109 121 

Days with HI > 95°F 6 31 37 50 65 82 

2080s       

Days with HI > 85°F 38 81 89 101 118 132 

Days with HI > 95°F 6 34 39 55 77 97 

 
3.1.7 Precipitation trends and projections 
Annual precipitation has increased since 1959, as recorded across all three long-term weather stations in NYC. The 
Central Park and LaGuardia stations exhibit similar statistically significant positive trends of 1.61 and 1.35 inches 

 
 
6 A recent study by Lu and Romps (2022) found that the NWS formula used to calculate heat index may lead to negative biases 
when applied to future climate scenarios. This paper was not available at the time when the climate projections were updated. 
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more rain per decade. Meanwhile rainfall at JFK airport station exhibits a slightly lower and not statistically significant 
trend of 0.93 inches more rain per decade.  

Total annual precipitation will likely increase, although precipitation projections are less certain than temperature 
projections. Mean annual precipitation is projected to increase by approximately 2 to 7 percent by the 2030s, 4 to 11 
percent by the 2050s and 7 to 17 percent by the 2080s relative to a baseline period of 1981 to 2010. The frequency 
of extreme precipitation days is projected to increase, with approximately one and a half times more events per year 
possible by the 2080s compared to the current climate (i.e. compared to the 1981 to 2010 baseline period). 

 

Figure 5. Annual total precipitation recorded at the Central Park, LaGuardia, and JFK stations for their overlapping period of 
observations (1960-2022). Solid line represents linear trend. *Trend is significant at the 95% confidence level. Source: Global 
Historical Climatology Network-daily 

3.1.8 New analyses of historical trends and future projection for subdaily precipitation 
Along with changes in annual precipitation, climate change will impact patterns of precipitation at subdaily time scales 
with implications for flooding, harbor water quality, as well as the design and maintenance of building systems and 
infrastructure. To evaluate historic trends in subdaily precipitation, a 68-year study of historical precipitation was 
conducted using hourly precipitation data from The NCEI Hourly Precipitation Dataset (HPCP; 1955-2013) (National 
Centers for Environmental Information (NCEI), 2023a) and Local Climatological Dataset (LCD; ID NCEI DSI 3505; 
NCEI 2005; 2014-2022) (National Centers for Environmental Information (NCEI), 2023b). The analysis included three 
NYC metropolitan area gages (Central Park, LaGuardia Airport, and Newark Airport), with JFK Airport excluded due 
to long periods of missing hourly data.  

During this period record, it should be noted that the observing technology used transitioned. Unshielded Universal 
(or Freiz) weighing rain gages were in use during the earliest part of each station’s record.  A tipping-bucket type rain 
gage was used at Central Park from 2000-2004, at LaGuardia from 1996-2004 and at Newark from (2000-2005).  
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These transitioned to an NWS all-weather precipitation accumulation gage in the later part of the record.  Wind 
shielding was added to the gage at LaGuardia in 2010 and Newark in 2019. It is likely that rainfall measured by the 
tipping bucket gages was underestimated, especially when intensity was high. The addition of wind shields likely 
resulted in a more accurate rainfall measurement.  Although these potential biases are an artifact of the entire U.S. 
national hourly precipitation record, established methods to adjust for these discontinuities are not available. 

For these analyses, discrete events were defined by at least a 4-hour period without rainfall (Restrepo-Posada & 
Eagleson, 1982; Yu et al., 2018) and characterized in terms of the peak hourly intensity observed during the event, 
the event total accumulation, the event duration, and the average intensity (defined as event total 
accumulation/duration). The number of events that occurred for each year and each gauge were computed and 
extreme precipitation events, defined as the number of exceedances of the 95th and 99th percentile values in the full 
record, were identified. The non-parametric Mann-Kendall test was employed (Hussain & Mahmud, 2019). This test 
was used to identify statistically significant upward and downward trends using a p-value threshold of 0.05. The 
results from these analyses are summarized in Table 3. Significant increasing trends in the 95th percentile peak 
hourly intensity and event total intensity were observed at all 3 sites.  
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Table 3: Precipitation Trends (1955-2022). Intensity-Duration-Frequency Curves calculated based on observations from 1950-1986 
and 1986-2022. The recent period values are statistically different from the earlier period, especially at the longer recurrence 
intervals. * Trend is significant at the p < 0.05 level. Source: Franco Montalto and Mobin Rahimi Golkhandan, Drexel University. 

 Newark Airport Central Park LaGuardia Airport 

Annual Accumulated Precipitation Increasing * Increasing * Increasing * 

Annual number of events    

Peak hourly intensity Increasing * Increasing * Increasing * 

Frequency of long-term 95th percentile 
peak hourly intensity exceedances 

Increasing * Increasing * Increasing * 

Frequency of long-term 99th percentile 
peak hourly intensity exceedances 

Increasing *   

Event total precipitation accumulation Increasing *  Increasing * 

Frequency of long-term 95th percentile 
event total precipitation accumulation 
exceedances 

Increasing * Increasing *  

Frequency of long-term 99th percentile 
event total precipitation accumulation 
exceedances 

   

Event Duration  Decreasing * Decreasing * 

Frequency of long-term 95th percentile 
event duration exceedances 

      

Frequency of long-term 99th percentile 
event duration exceedances 

      

Average hourly intensity Increasing * Increasing * Increasing * 

Frequency of long-term 95th percentile 
average hourly intensity exceedances 

Increasing * Increasing * Increasing * 

Frequency of long-term 99th percentile 
average hourly intensity exceedances 

Increasing * Increasing *  

 
Urban stormwater and other critical infrastructure systems are designed to withstand a defined intensity and duration 
of rainfall, known as the ‘design storm’. For any given rain event, the intensity of rainfall (defined as rainfall depth over 
a given duration) is associated with an annual probability of occurrence, usually described by its reciprocal return 
period. Accurate representation of the probability of rainfall intensity is thus critical for stormwater management and 
flood resilience planning and design. This information is presented in site-specific Intensity-Duration-Frequency (IDF) 
curves, developed based on frequency analysis of historic rainfall at specific locations and under the assumption of 
stationarity - the idea that natural systems fluctuate within an envelope of variability that is unchanging with time (Milly 
et al., 2008). With projections of amplified precipitation intensity through the 21st century due to global climate 
change (Allan & Soden, 2008; Fowler et al., 2021; Pfahl et al., 2017), the appropriateness of this approach to urban 
drainage design has recently been called into question (National Oceanic and Atmospheric Administration, 2022) . 

Two sets of Partial Duration Series (PDS; 1950-1986 and 1986-2022) were constructed separately using hourly 
precipitation data from the sources described above. For each PDS in the array, IDF curves (Figure 6) describing 
rainfall amounts corresponding to annual recurrence probabilities of 50%, 20%, 10%, 4%, 2% and 1% (i.e. 2-, 5-, 10- 
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25-, 50- and 100-year storms) were computed by simulating the methodology used in NOAA Atlas 14 (Perica et al., 
2019).  As shown in Figure 6, changes between the 1950-1986 and the 1986-2022 IDF curves vary with rain event 
duration and recurrence probability, with substantially greater changes observed for the 1-12 hour events at 
recurrence intervals greater than 25-years. For example, at the Central Park weather station (Figure 6), the 50-yr 
return period the change in the 1-hour duration is 40%, while for the 24-hr duration rain event it is only 15%.   

 

 

Figure 6. Intensity-Duration-Frequency chart created from two sets of Partial Duration Series (PDS): early (1950-1986, blue) and 
late (1987-2022, orange) for differing hourly durations (Panels A-F) and return periods (x-axis). The 90% confidence interval based 
solely on the 1950-2022 POR is plotted in black. Source: Colin Evans, Cornell University. 

3.1.9 Sea level rise projections  
Sea level rise (SLR) in NYC is projected to continue to exceed the global average and is very likely to accelerate as 
the century progresses. A recent study based on statistics and oceanographic data warns of a potential collapse of 
the AMOC an important branch of the global ocean circulation system, as early as the 2050s under current 
greenhouse gas emissions (Ditlevsen & Ditlevsen, 2023). Most experts only anticipate a future slowing of the AMOC 
as opposed to a complete collapse (Liu et al., 2020);  a weakening of the AMOC could lead to increased thermal 
expansion, and redistribution of ocean water mass shoreward especially in the mid-Atlantic region, including New 
York City (Krasting et al., 2016; Yin & Goddard, 2013), as well as increased frequency of coastal flooding in the 
Southeast U.S. (Volkov et al., 2023). 

Projections for SLR in NYC are 14 to 19 inches (0.36-0.48 m) by the 2050s and 25 to 39 inches (0.64-0.99 m) by the 
2080s when compared with a 1995 to 2014 baseline period; SLR could reach as high as 5 feet (1.5 m) by 2100. Full 
details of the methods used to develop these projections with the scenarios shown in Figure 7(2023) can be found in 
Braneon et al., (2024). Under the ARIM scenario presented in 2019 by NPCC3, accelerated loss of land-based ice 
could lead to sea level rise of up to 81 inches (2 m) by the 2080s and 114 inches (2.9 m) by 2100 under a plausible 
‘worst-case’ scenario that cannot entirely be ruled out. 
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Figure 7. Projected Sea Level Rise Under Different Scenarios at The Battery in New York City. Median values for three scenarios 
are shown with solid lines and shaded regions show the 17th-83rd percentile ranges presented in the IPCC Sixth Assessment 
Report. Projections are relative to a 1995-2014 baseline. Source: National Aeronautics and Space Administration (2023)  

4 Drivers of Extreme Heat 
4.1 Large-scale Drivers 
Extreme heat in NYC is driven both by large scale climate processes and local characteristics of its land cover. At the 
large scale studies show that that changes in global mean temperatures have led to an increase in the frequency, 
intensity, and duration of extreme heat events (Coumou & Robinson, 2013; Habeeb et al., 2015). A review of global 
drivers of extreme heat by Horton et al (2016) found that several dynamical climate mechanisms impact the 
occurrence and intensity of extreme heat events such as (1) land-atmosphere feedbacks, (2) atmospheric blocking 
events, and (3) planetary-scale atmospheric waves. While there is evidence to support that warmer climates may 
enhance land-atmosphere feedbacks and their impact on heat extremes, there are still open questions on the other 
aforementioned mechanisms’ sensitivity to global climate change. 

There is evidence, however, of increasing trends in large scale circulations linked to extreme heat as a result of 
global climate change. Horton et al (2015) found increasing trends over North America in the occurrence of warm 
season atmospheric blocking, often dubbed heat domes for their warm air trapping effect, finding that increases in 
temperature extremes are impacted not only by thermodynamic changes but also increased incidence of regional 
flow regimes. Climate models, however, may have biases in their representation of the incidence of these large-scale 
flows, which may lead to uncertainties in future projections of extreme heat (Jeong et al., 2022). Meanwhile, evidence 
from extreme heat events in Europe indicates that the cooling capacity of soil moisture through evaporation may be 
depleted by high temperatures, which in turn allows for even higher temperatures due to lack of cooling – a positive 
feedback loop (Miralles et al., 2014). Nevertheless, increased temperatures, including in NYC, are one of the 
strongest signals in climate projections as a function of increasing greenhouse gas emissions (Calvin et al., 2023).  

4.2 Local Drivers 
Local landcover characteristics drive surface and air temperature in the urban built and natural environment. The 
urban built infrastructure refers to streets, sidewalks, and buildings and is primarily comprised of impervious surfaces 
of varying material types, reflectance, and thermal capacities. Throughout the day these surfaces retain, store, and 
emit heat from incoming solar radiation. The rate and magnitude at which the built infrastructure transfers heat 
impacts the surrounding air and surface temperature of the environment. For example, surfaces that have a low 
albedo or reflectivity (e.g. asphalt streets) typically absorb and store more heat during the day releasing it slowly as 
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sensible heat in the afternoon (Oke, 1982). The release of sensible heat warms the surrounding environment. The 
installation of impervious surfaces in an urban environment such as NYC can also limit natural cooling processes 
such as evaporation, evapotranspiration and wind speed and direction (Mallen et al., 2020). Tall buildings can create 
an “urban canyon” effect that can prevent ventilation and trap heat (Oke, 1982). Anthropogenic heat from human 
activity like traffic, industrial processes and air conditioning is an additional source of heat commonly found in the 
urban environment which can elevate urban air temperature (Oke, 1982). The natural environment is mainly 
comprised of pervious surfaces characterized by vegetation like shrubs, grasses, and trees. Vegetation cools the 
environment through shade and evapotranspiration. The natural environment stores less heat during the day and 
releases heat at a faster rate than the built environment. 

The urban and natural environment store and retain heat from incoming solar radiation throughout the day and 
commence releasing heat as the sets in the afternoon. The slower release of heat from the built environment creates 
a temperature differential with areas containing more of the natural environment creating a phenomenon called the 
urban heat island (UHI) (McConnell et al., 2022) effect characterized by an urban heat island intensity (UHII) (Memon 
et al., 2009). The UHII is traditionally reported as a temperature difference between the urban and surrounding rural 
environment. The highest UHII is commonly observed during the late afternoon through nighttime period. In recent 
years other characterizations of UHII have been used in literature (Almeida et al., 2021; Wang, 2022) as a 
comparison to include parks (Cai et al., 2023; Yao et al., 2022), airports (Gough & Leung, 2022; Wan et al., 2022) 
and land classification zones (Zhou et al., 2020). In NYC neighborhoods contain varying amounts of the built and 
natural infrastructure causing some neighborhoods to maintain warmer temperatures (Hamstead et al., 2016). 
Equitable heat mitigation and adaptation policies seek to reduce neighborhood temperature heterogeneity, while 
reducing local citywide temperature (Broadbent et al., 2022; Heger, 2022; Shi et al., 2023).  

UHII in NYC has been studied for several decades, with observations of urban-rural temperature differences of 
3.22°F on average and as high as 5.4°F reported by (Bornstein, 1968). More recent observations based on longer 
study periods found that the NYC UHII averaged between 4°C in the summer and 5.4°C in the winter and spring, with 
significant variability due to the time of day and prevalent weather conditions (Gedzelman et al., 2003).  

The spatial distribution of the NYC UHI is linked to both characteristics of the land surface and larger scale prevailing 
wind conditions (Raven et al., 2022). The NYC UHI is impacted significantly by afternoon sea breezes, which move 
its core inland towards The Bronx and New Jersey in the afternoon, while nighttime land breezes may move its core 
over Brooklyn and Queens. Studies have found that contributions from NYC’s built surface varied significantly due to 
the characteristics of the urban surface as well as distance to the southeastern coastline where sea-breezes typically 
come from, and that these contributions extended several hundred meters above ground (Bauer, 2020; Ortiz et al., 
2018).   

Studies have quantified the impacts of landcover on air temperature in the urban environment. Characteristics of the 
built environment are more closely associated with nighttime air temperature variance compared to daytime air 
temperature (Alonzo et al., 2021; Shiflett et al., 2017; Zekar et al., 2023; Ziter et al., 2019). Minimum (nighttime) air 
temperature is influenced by building height (Chen et al., 2020; Konarska et al., 2016). Research using land use 
regression modeling have observed a non-linear relationship between temperature and canopy cover and greenness, 
requiring a threshold of canopy cover associated with decreases in air temperature, and with diminished cooling as 
distance increases from tree canopied areas (Johnson et al., 2020; Ziter et al., 2019). Decreases in nighttime 
temperatures were found to be associated with a 32% threshold in a 200 m buffer (Johnson et al., 2020) and a 
greater than 40% threshold in a 60-90m buffer (Ziter et al., 2019). 

The relationship between urban land cover (i.e. tree canopy, building height/area, impervious land cover) and 
temperature is made more complex by intra and inter-variability based on the time of day (Raven et al., 2022). 
Pedestrian (ground) level air temperature monitoring offers a means to observer hyper-local variability to assess and 
explore microscale interactions between land cover and temperature, which can lead to changes in how humans 
interact with the environment thus impacting day-to-day human health. 
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BOX 1. Temperature monitoring in NYC 

In 2018 as a part of Cool Neighborhoods NYC, a comprehensive heat adaptation and mitigation plan (City of New York Mayor’s 
Office of Resiliency, 2017), the city launched a 2-year hyper-local temperature monitoring effort installing nearly 500 air temperature 
sensors in medium to high HVI neighborhoods (see Braneon et al. (2024), Figure 11, for HVI distribution map (2024). These HVI 
neighborhoods were identified based on the prevalence of vegetative cover, air conditioning and demographic prevalence, daytime 
surface temperature, median income, and demographic prevalence. Intra (within) site variability in NYC med-high neighborhoods 
was observed to be larger during the afternoon when UHII is highest compared to the nighttime (Figure 8a). In contrast inter 
(between)-site (between sites) variability is higher at night compared to the afternoon. The magnitude of temperature variability is 
larger for observations representing higher temperature ranges for the afternoon and nighttime periods (Figure 8b). The site with 
the highest afternoon variability is Central Harlem, Manhattan adjacent to Marcus Garvey Park. The lowest variability was observed 
in Stuyvesant Heights Brooklyn. Reducing intra and inter neighborhood variability is important when considering equitable heat 
adaptation and mitigation policies within NYC communities. The thresholds used were based on the 2023 NYC Heat mortality report 
prepared by the NYC Department of Health (City of New York Department of Health and Mental Hygiene, 2023). 

 

Figure 8. Estimates of intra-site under tree canopy air temperature variability (standard deviation (σ)) per borough for (a) summer 
period (July-August) (b) upper threshold temperature (>82 °F nighttime, 90°F afternoon). Dotted line denotes the inter-site 
variability. Solid line is the 1:1 line. Source: NYC DOHMH 
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BOX 2. Interactions between heat waves and UHIs 

UHIs are the product of dynamical interactions between the land surface and the atmosphere, as well as urban planning decisions 
that dictate the form and material properties of urban landscapes. There is significant evidence of UHI intensification during periods 
of extreme heat due to so-called synergistic interactions (Li & Bou-Zeid, 2013). These synergies arise due to (1) the impact of 
extreme heat on soil moisture availability, which significantly affects the ability of the surface to cool via evapotranspiration, as well 
as (2) increased intake of heat in built-up surfaces. Studies have found these synergies to also occur in NYC (Figure 9) from Ortiz et 
al., (2018), with UHI intensification of over 5°C during a heat wave due to limited cooling and enhanced heat storage (Ortiz et al., 
2018; Ramamurthy et al., 2017).  

 

 

Figure 9. Contribution of urban surfaces to near surface temperatures before and during a heat wave event in NYC. Reproduced 
from Ortiz et al (2018). 

5 Tail Risk Implications and Challenges 
Low-probability extreme weather and climate change scenarios that have high consequences are referred to as “tail 
risk”. When assessing the risks associated with natural hazards and climate change, tail risks (i.e. low-probability 
extreme events) often play a much larger role than the probability of climate hazards alone might indicate (Quiggin, 
2018). Tail risk is important to quantify, as it entails low-probability scenarios that have high consequences.  

Tail risk for extreme weather is often underestimated because the historical record is insufficient to include a good 
characterization of extreme events. Tail risk for climate projections is often not revealed, due to a focus on the 
scenarios with moderate greenhouse gas emissions (e.g., SSP2-4.5) or by considering 90th percentiles as worst-
case scenarios. Uncertainties in tail risk need to be reduced through deeper exploration of historical data, modeling of 
synthetic events, and climate downscaling simulations. When assessing extreme flooding, tail risk can also be 
reduced by more careful extreme value assessment that explores separation of tropical cyclone event data from other 
events.  

Underestimating tail risk can lead to repeatedly being caught by surprise by events like Sandy and Ida and potentially 
other hazards such as extreme winds. Climate change impacts can have high tail risk, such as the ARIM scenario. 
Baseline (present-day) hazards can also have high tail risk, such as events like Hurricane Sandy. Sandy can be 
considered more of a baseline hazard, given that a similar storm surge had occurred in the historical record in 1821 
(Orton et al., 2016) and research has only found anthropogenic climate change to have contributed to 13% (7.5-23%) 
of the damages (Strauss et al., 2021). However, FEMA and NOAA assessments of extreme coastal water levels at 
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the time of Sandy’s impact suggested it was a very unlikely event with a 1570-year return period (Federal Emergency 
Management Agency, 2007; Sweet et al., 2013). Reasons why the tail risk of extreme events such as Sandy and Ida 
could be underestimated are revealed below. 

5.1 Extreme Precipitation Implications 
The most direct mechanism of precipitation intensification results from the thermodynamic relationship between 
atmospheric temperature and the saturation vapor pressure of water, which is known as the Clausius-Clapeyron (CC) 
Relation (‘warmer air holds more moisture'). Under the temperature conditions relevant to weather, the amount of 
water vapor in the atmosphere at saturation will increase 6-7% per degree Celsius warming. From this 
thermodynamic relationship alone, it would be expected that precipitation would occur less frequently when the 
supply of atmospheric moisture is limited, since more moisture would be required for the atmosphere to reach 
saturation, condense, and precipitate. However, when large-scale weather conditions provide a source of 
atmospheric moisture, there would be more precipitable water and, in turn, higher rainfall rates once saturation is 
reached (Trenberth et al., 2003). 

Along with this direct thermodynamic effect, climate change can also influence short-duration precipitation extremes 
through several key atmospheric processes that take place at micro- to global spatial scales. At a global scale, a 
fundamental effect of global warming will be the thermal expansion of the warming troposphere and stratospheric 
cooling, resulting in an increase in the height of the tropopause. Increased tropospheric heights will allow for deeper 
convection and increased precipitation rates when local conditions are favorable (Lenderink et al., 2017; Loriaux et 
al., 2017; Santer et al., 2003).  

Global warming can also influence precipitation patterns through changes in the continental-scale atmospheric 
circulation patterns that determine the transport of moisture across the globe. In the eastern United States, the 
climatology of large-scale moisture transport can be described by 16 spatially distinct atmospheric transport patterns, 
each with a distinct frequency and seasonality (Teale & Robinson, 2020). Anthropogenic climate change could 
potentially alter the frequency or seasonality of these patterns, with implications for local moisture availability and the 
probability of extreme precipitation in the future. 

Large scale patterns associated with tropical cyclones (including tropical depressions, and hurricanes) also play an 
important role in the climatology of extreme precipitation in the northeast. This includes events associated with direct 
rainfall from tropical cyclones passing over, or very close to NYC. It also includes extreme rainfall that results from the 
remnants of tropical storms, such as the cloudburst associated with the remnants of Hurricane Ida in 2021, or 
changes to atmospheric dynamics such as lifting, instability, or moisture availability induced by tropical cyclones 
hundreds of kilometers away (Barlow, 2011). 

In an observational analysis study of the continental United States, Barlow (2011) found that over most of the 
Northeast, more than two‐thirds of all extreme daily rainfall events between 1975 and 1999 were linked to tropical 
cyclone‐related activity. In terms of the dynamics underlying the forcing of extreme precipitation, Barlow’s study found 
that the relationship between tropical cyclones or their remnants on large-scale lift was much greater than the 
relationship with moisture availability and buoyancy. It recommended further study of the interactions of tropical 
cyclones with large-scale circulation patterns that induce lift, such as the jet stream. This is notable, since large-scale 
lift induced by a powerful jet streak and associated upper-level divergence was a key contributor to the extremely 
intense precipitation observed during the Ida-remnants cloudburst in NYC in 2021 (National Oceanic and 
Atmospheric Administration, 2023b, fig. 4). 

The influence of climate change on mesoscale storm processes also has the potential to result in more intense short-
duration precipitation. Convective precipitation can occur in isolated thunderstorm cells or as part of organized 
clusters described as Mesoscale (10s to 100s of kilometers) Convective Systems (MCSs), which are often embedded 
into larger scale circulation such as squall lines or Nor'Easters. Organized convection is associated with increased 
precipitation efficiency - the ratio of moisture that falls to the surface as precipitation to total condensed moisture 
within a storm - and more intense precipitation (Fowler et al., 2021). Mosely et al. (2016) found that increased surface 
temperatures resulted in enhanced convective organization and more extreme precipitation and that, more broadly, 
the interactions amongst convective cells could be strongly influenced by large-scale changes in climate.  

Historically, flash flooding in the northeast has been more commonly associated with disorganized, localized 
convective cells rather than organized MCSs, especially when compared to other regions of the United States 
(Jessup & Colucci, 2012). The significance of potential changes in convective organization in more extreme 
precipitation with climate change remains uncertain and is still in early stages of investigation (Pendergrass, 2020), 
however, some initial studies indicate that the storm areas may be larger and more organized under climate warming 
(Lenderink et al., 2017; Lochbihler et al., 2019). In a climate modeling study simulating an unmitigated global warming 
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scenario (RCP 8.5), Prein et al. (2017) found that the total volume of summertime precipitation increased with global 
warming due to both increased precipitation rates and increases in the area over which precipitation occurs in 
organized MCSs. 

Within individual thunderstorms, the increased moisture from warmer temperatures will increase the release of latent 
heat, creating more instability and stronger updrafts within thunderstorms and increasing precipitation rates beyond 
what would be expected from the increase in moisture availability alone. Assuming that latent heat within a 
thunderstorm is proportional to precipitation intensity and that kinetic energy of rising air within a thunderstorm 
increases proportionally with latent heating, precipitation intensity would be expected to increase at a rate twice that 
predicted by the CC relationship alone (2CC-scaling (Lenderink et al., 2017). 

Changes in microphysical dynamics within thunderstorm clouds can also influence precipitation efficiency and 
convective precipitation rates. Precipitation efficiency is determined by the size distribution of hydrometeors (water 
and ice droplets) within thunderstorm clouds and the extent to which these hydrometeors re-evaporate or are re-
entrained in updrafts before falling as precipitation to the ground. Singh and O’Gorman (2015) found that climatic 
warming resulted in an increase in the fall speed of water and ice droplets within clouds. Higher fall speeds reduce 
the probability that a water droplet will evaporate or be reëntrained in updrafts within the thunderstorm, resulting in 
higher precipitation efficiency within any given storm. However, the fall speed of water droplets within clouds can also 
influence updraft velocities, and in-turn precipitation rates (Bao & Sherwood, 2019; Parodi & Emanuel, 2009). 
Understanding the changes in these microphysical processes are most significant for sub-hourly precipitation rates 
(Singh & O’Gorman, 2015): studies on the contribution of tropical cyclones to subdaily rainfall in the New York City 
Metropolitan region are not yet available in the academic literature. 

5.2 Sea Level Rise Implications 
A key remaining uncertainty around the tail risk of future sea level rise is the future stability of the ice sheets and the 
Antarctic Ice Sheet as it holds the equivalent of 58.3 m of global mean sea level rise (GMSLR) if all its ice melted. 
The West Antarctic Ice Sheet (WAIS) is potentially subject to two instabilities: the Marine Ice Sheet Instability (MISI) 
and Marine Ice Cliff Instability (MICI) (Braneon et al., 2024, section 4.1.1). Therefore, in NPCC3, Gornitz et al. (2019) 
also considered one high end, low probability scenario—ARIM scenario, which includes these potential instabilities. 
DeConto et al. (2021), in a revised extreme upper tail GMSLR scenario which also includes these instabilities, found 
that by 2025, the median contribution of the WAIS to GMSL approaches 1 m and by 2150 rates exceed 6 cm. By 
2300, Antarctica could contribute 9.6 m of GMSLR under RCP8.5 due to sustained CO2 emissions increases that 
extend past 2100.  

A new study finds that projected 21st century ocean temperature increases in the Amundsen Sea region of WAIS 
point to inevitable widespread basal ice shelf thinning and melting in most greenhouse gas emissions scenarios 
(Naughten et al., 2023). With weakened ice shelf buttressing, accelerated rates of ice-shelf melting would become 
inevitable even for moderate future climate policies, with adverse implications for the stability of WAIS. 

The Greenland Ice Sheet, which holds the equivalent of 7 meters of sea level rise is also potentially vulnerable to 
abrupt ice-sheet loss beyond a global mean temperature threshold of 1.7 °C to 2.3 °C above preindustrial levels 
(Bochow et al., 2023). This ice loss can be substantially reduced if global mean temperature change reverts to less 
than 1.5°C above preindustrial levels within a few centuries. Nevertheless, even temporarily overshooting the 1.5°C 
temperature threshold, still leads to a peak in SLR of up to several meters even if ice sheets return to nearly historical 
normals.  

5.3 Potential Mischaracterization of Tail Risk from Tropical Cyclones 
A fundamental challenge with storm-related hazard assessments for the U.S. Mid-Atlantic and Southern New 
England is that Tropical Cyclones (TCs) (defined as including hybrid storms and post-TCs) are responsible for the 
largest events (e.g. Sandy and Ida) but occur infrequently during the typical detailed observation record (e.g. 75 years 
for hourly rainfall data from 1948-2022). Therefore, TC hazard data are typically under-sampled, leading to difficulty in 
constructing extreme value distributions. As a result, despite large differences in TC and extratropical cyclone (ETC) 
maximum storm intensities judged by pressure drop or maximum sustained wind speed, observation-based 
assessments of surge, wind and rain hazards typically merge data from TCs with far more numerous data from ETCs.  
An alternative solution to this problem has been model-based assessments that create synthetic TC events to enable 
separate extreme value analyses of TCs and ETCs (e.g. Gori et al., 2022; Orton et al., 2016). For the NYC area, 
these model-based assessments that separate data by storm type have at times found substantially higher estimates 
of water level extremes (Cialone et al., 2015; Federal Emergency Management Agency, 2014; Orton et al., 2016). 
However, such model-based hazard-assessments have a high epistemic uncertainty and are challenging to 
independently validate. This approach has rarely (or never) been applied for wind and rain hazard assessments for 
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NYC, which have continued to use merged observational data, potentially underestimating the baseline natural 
hazards and societal “tail risk”.  

A recent analysis is summarized here that evaluates the differences between merged and separate extreme value 
analyses for TC and ETC storm tides (McPherson et al. 2024, section 2.9). Storm tide return level data are created 
for a range of US Mid-Atlantic and Northeast Coast TC and ETC coastal storm tide climates (e.g. Lin et al. 2012; 
Orton et al. 2016; Dullart et al. 2021). The TC peak storm tide exceedance curves follow the Gumbel distribution with 
a range of nine different slopes.  A single ETC peak storm tide exceedance probability curve is utilized based on the 
Generalized Extreme Value (GEV) distribution that represents water level extremes for NY Bight and southern New 
England (e.g. Orton et al., 2016; Dullart et al., 2021).  

Stochastic storm tide event sets for TCs and ETCs are created by sampling from these distributions to create 
synthetic historical periods of 100 years, similar to that available from NOAA for New York City at the Battery tide 
gauge. One thousand Monte Carlo simulations are performed for each storm tide climate and Extreme Value Analysis 
(EVA) is applied to each synthetic historical period. In each simulation, EVA is performed on both merged versus 
separated TC and ETC populations, and the results are compared. Three analysis methods are utilized -- (1) fitting 
combined TC/ETC datasets annual maximum storm tide (AMST) with Generalized Extreme Value (GEV) distributions 
as has recently been standard practice (National Oceanic and Atmospheric Administration, 2023a; Sweet et al., 
2013); (2) Using a peaks-over-threshold approach and Generalized Pareto Distribution (GPD) with mixed ETC and 
TC events, as done in many hazard assessment types (e.g. Atlas-14; others), and (3) Using approach #1 for ETC 
and #2 for fitting TC storm tide distributions.  

 
Figure 10. Results of a series of Monte Carlo simulations of Extreme Value Analyses of estimated 100-year storm tides for synthetic 
data for 100-year datasets, across a range of environments with different a priori known 100-year storm tides. EVA approaches 
studied include (left) GEV distribution fitting of mixed data, (middle) GPD distribution of mixed data, and (right) separated TC and 
ETC distribution fitting. Error bars show 90% variability ranges of the results. 

Results show that fitting GEV distribution to AMST from mixed storm tide populations often leads to underestimated 
100-year storm tides (Figure 10 left panel). The GPD approach greatly reduces the low bias (middle panel), but the 
GPD focus only on the tail of the distribution tail raises the uncertainty higher than that for separated EVA. The 
separate analysis of TCs and ETCs has moderate uncertainty but minimizes the low bias (right panel).  

The results of these analyses demonstrate some of the challenges of quantifying tail risk. Small numbers of extreme 
events that predominantly come from TCs lead to either low bias or high uncertainty in estimated 100-year extremes, 
illustrated in Figure 10. These same challenges likely apply to storm surge, wind and rainfall, and separated EVA 
should be explored for all these coastal storm related hazards. These challenges point to the importance of not over-
relying on quantitative projections, given deep uncertainties and limitations to model based projections; more 
qualitative approaches, grounded in decision making under uncertainty, are likely to be instructive for these and other 
uncertainties described in this chapter and throughout this report. 

5.4 Limitations Associated with GCM Resolution and Downscaling Methods 
Many recent studies (DeGaetano & Castellano, 2017; Kunkel et al., 2020; Miro et al., 2021; National Weather 
Service, 2022) have employed a quantile delta approach to develop climate-change informed IDF curves. Quantiles 
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are discrete segments within a probability distribution, in this context corresponding with the recurrence intervals 
associated with IDF curves of a given duration (Miro et al., 2021). The ensemble of downscaled GCM outputs are 
used to calculate delta change factors, the relative change between the present and the future precipitation frequency 
estimates for each quantile.  The delta change factors between historic and future values are calculated separately 
for each quantile within the IDF probability distribution. This approach is quasi-stationary, with constant delta change 
factors applied for each future time interval. Time intervals are typically 30 years or more, allowing for representation 
of multidecadal climate conditions. The delta change factors are then used to adjust IDF curves based on past 
observations so that they represent future non-stationary climate. 

A key advantage of applying the quantile delta change method to calculate the rate of increase of future estimates is 
that the inherited bias of the climate model data is reduced when applied as ratios. These rates of increase of the 
future estimates can be applied along with the current period, which is based on more reliable spatial and temporal 
characteristics of the historical observations (National Weather Service, 2022). Also, with this approach, the relative 
changes in all modeled quantiles are accounted for rather than only relative changes in the modeled mean (Cannon 
et al., 2015).Future intensity duration frequency (IDF) curves were generated using downscaled precipitation data 
from the Localized Constructed Analogs version 1 (LOCA1) (Pierce et al., 2014) and version 2 (LOCA2) (Pierce et al., 
2023) and compared.  An ensemble of 21 CMIP5 GCM models is the basis of the LOCA1 dataset, while 27 CMIP6 
GCM models, with up to ten of their ensemble members, are used in LOCA2.  Only a single downscaling method was 
considered given LOCA2 was the only available downscaled CMIP6 dataset available at the time, and due to the 
desire to reflect data used in the U.S. National Climate Assessment. The two main differences between LOCA1 and 
LOCA2 are the input GCM data and the precipitation training data - LOCA1 downscaled CMIP5 model outputs 
whereas LOCA2 downscaled the CMIP6 models' outputs to generate high resolution (6km) future projections of 
precipitation. LOCA1 used an observational dataset from (Livneh et al., 2015). However, additional analyses on this 
dataset discovered a bias in the strength of daily rain extremes which resulted in unrealistically weak values (Pierce 
et al., 2023). LOCA2 uses Pierce et al. (2021), which is believed to correct the bias seen in (Livneh et al., 2015) and 
better represent daily rain extremes (Pierce et al., 2023). Differences in downscaling methodology including the 
observational data used in bias correction, are a source of uncertainty in the resulting projections.  Maimone et al. 
(2023) examined the influence of such uncertainty and concluded that despite differences associated with various 
approaches (including the method used here) the range of future extreme rainfall projections was comparable and 
provided practical planning-level data. 

Overall, a total of six GCM experiments were analyzed. For CMIP5, the historical period covers 1950-2005. Its future 
climates are based on the representative concentration pathways (RCP) scenarios that represent medium-low 
emissions (RCP4.5) and high emissions (RCP8.5) future climates. For CMIP6, the historical period covers 1950-
2014, and its two future scenarios (2015-2099) under the shared socio-economic pathways (SSP) that represent low 
emission (SSP245) and high emission (SSP585) future climates.  

Across the four stations (Central Park, JFK Airport, LaGuardia Airport, and Newark Airport), the extremes seen in 
LOCA2 downscaled CMIP6 projections tend to be larger than those in LOCA1 downscaled CMIP5 values in both the 
lower and high emissions scenarios (Figure 11 b & d). This is particularly evident at the longer return periods. For 
Central Park (which is representative of JFK and LaGuardia), the CMIP6 change factors are similar to those from 
CMIP5 for the 2-yr return period, but for return periods >5 years, the CMIP6 values exceed the 50% confidence 
interval of the CMIP5 (LOCA1) values in the majority of cases (Figure 11 a & b). The results for Newark are similar 
(Figure 11 c & d). Like Central Park, the CMIP6 2-yr return period change factor is marginally lower than that of 
CMIP5, but for the remaining returning periods the CMIP6 values exceed those from CMIP5. However, Newark is the 
only station where all CMIP6 change factors are within the 50% confidence interval of CMIP5 (Figure 11 c&d). It 
should be noted that these differences can arise from both the underlying global climate models as well as the 
differences in methods used in LOCA1 and LOCA2. 
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Figure 11. Comparison of CMIP5 and CMIP6 extremes for multiple return periods and across medium-low (RCP4.5) and high 
(RCP8.5) emissions scenarios. Solid lines denote ensemble means, while dashed lines show the ensemble 50% confidence interval 
Source: Colin Evans, Cornell University 

The GCMs downscaled to develop the delta change factors are able to represent the dynamics of large-scale 
atmospheric processes and their interactions across the globe. But they are unable to represent the dynamic 
processes described in Section 5.2.1 that take place at finer-spatial scales (Table 4)(Maimone et al., 2019; Yu et al., 
2018). While statistical downscaling provides a means to represent the finer-scale spatial structure of precipitation, it 
is based on historical patterns that may not be representative of future climate. For example, the observed changes in 
annual probability for extreme subdaily precipitation at the Central Park Weather Station are substantially greater 
than those for daily precipitation (Table 3). Such changes may not be represented in current projections based on 
downscaled GCMs if they result from finer-scale processes. 

As an alternative, Convection Permitting Regional Climate Models (CPRCMs) are RCMs run at < 4km spatial 
resolution. At this resolution, deep convection parameterization is no longer required since the convective dynamics 
within rainstorms - and their potential changes with global warming - can be explicitly simulated (Kendon et al., 2017). 
In addition, these models are better able to represent details of the land surface, which might be particularly important 
in highly urbanized areas like New York City (Luo et al., 2022; Luong et al., 2020). But while CPRCMs have the 
potential to provide important insight on how climate change will impact extreme precipitation, no single CPRCM can 
accurately represent future climate on its own and studies utilizing an ensemble of CPRCM outputs are needed to 
generate robust projections for subdaily precipitation (Ban et al., 2021; Pichelli et al., 2021).  The computational 
expense of CPCRM remains a challenge and such studies have only been piloted in a small number of regions 
across the world over the last four years (Kendon et al., 2021). At the time of writing, an ensemble of CPCRM 
forecasts needed to conduct such a study is not yet available for NYC.  
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Table 4. Representation of multiscale precipitation processes in climate models 

 

6 Opportunities for Future Research 
There remain key gaps in the understanding of changing climate risks in NYC. In this section, we present a non-
exhaustive list of research gaps that may inform important impacts of a changing climate in NYC, tied to the topics 
covered here. Additional research gaps related to climate and its changing impacts may be found in Braneon et al. 
(2024). While projections for extreme heat were updated in this chapter, they focused on outdoor conditions as 
modeled by climate models in CMIP6. However, indoor heat exposure remains the most common site for the onset of 
heat related mortality and hospitalizations (Matte et al., 2024). Addressing this gap will need an interdisciplinary 
research agenda that studies not only the physics of the climate systems but also its interactions with human 
infrastructure (e.g., homes, the urban canopy). Another gap related to extreme heat is the lack of spatially explicit 
projections for air temperature. NPCC3 (González et al., 2019) described new methods that could fill this gap using 
methods like dynamical downscaling, but high computational costs and uncertainties around future changes to the 
city’s urban landscape have made robust application prohibitive. Downscaled projections to the neighborhood and 
higher levels could provide invaluable information on the physical interactions between a changing climate and the 
unjust distribution of heat-resilient spaces that lead to inequitable exposure to extreme heat in cities like NYC due to 
decades (Chakraborty et al., 2019; Foster et al., 2024; Matte et al., 2024; Wilson, 2020). 

Another key gap relates to the treatment of CMIP6 models with ECS outside of the likely range. Although analysis 
presented in this chapter describes the existing differences between the so-called “hot models” and the rest of the 
CMIP6 ensemble, there may be larger scale physical processes that may be poorly constrained in these models. 
Additional research may be needed to better understand the relationships between increased ECS and the frequency 
and intensity of weather extremes in NYC. Moreover, because of the complex nature of the climate system and the 

Climate Model Type 
[spatial resolution] 

General 
Circulation Model 
(GCMs) 
[25 - 100 km] 

Tropical Cyclone 
Permitting GCMs 
 
[20 - 50km] 

Regional Climate 
Model (RCMs: e.g. 
NA-CORDEX) 
[25 - 50km] 

Convection 
Permitting RCMs 
 
[1 - 4km] 

Thermodynamic 
Processes 

CC-scaling with global 
covariates (radiative 
forcing, mean global 
temperature anomaly) 

CC-scaling with global 
covariates (radiative 
forcing, mean global 
temperature anomaly) 

CC-scaling with local 
covariates (local 
temperature, 
dewpoint, precipitable 
water) 

CC-scaling with local 
covariates (local 
temperature, 
dewpoint, precipitable 
water) 

Increased tropopause 
height 

Represented in 
convection 
parameterizations 

Represented in 
convection 
parameterizations 

Represented in 
convection 
parameterizations 

Represented in model 
simulations 

Large (continental)-scale 
atmospheric circulation 
patterns and moisture 
transport 

Represented in model 
simulations 

Represented in model 
simulations 

Provided as lateral 
boundary conditions 
from GCMs 

Provided as lateral 
boundary conditions 
from GCMs 

Tropical cyclones Insufficiently 
represented 

Represented in model 
simulations 

Represented in model 
simulations 

Represented in model 
simulations 

Mesoscale changes to 
convective organization 

Not directly 
represented 

Not directly 
represented 

Not directly 
represented 

Represented in model 
simulations 

Within-storm convective 
processes 

Not directly 
represented 

Not directly 
represented 

Not directly 
represented 

Represented in model 
simulations 
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models that try to quantify their processes the causes of enhanced ECS are poorly understood. A research agenda 
that includes out-of-sample tests from paleoclimate records and modeling may provide insights into the constraints 
needed in the next generations of earth systems models (Burls & Sagoo, 2022a). Similarly, data collection on key 
processes related to large scale drivers of climate change and sea-level rise may inform constraints on existing 
models and improve estimation across a range of impacts. As an intermediate solution, future NPCC assessments 
could elect to present projections across global warming levels (e.g., 2°C, 3°C) to avoid some of the potential 
influences from the hot models in the CMIP ensemble.  

7 Traceable Accounts 
Key Message 1  NPCC4 analysis of the impact of hot models on the CMIP6 ensemble found no statistically significant 

difference between the temperature and precipitation projections of record and alternative projections that 
do not include models with equilibrium climate sensitivity outside the expected range. The CMIP6 climate 
model ensemble used to create the temperature and precipitation projections of record contains three 
models that display higher-than-expected sensitivity of temperatures to greenhouse gases. These so-called 
“hot models” lead to higher global mean temperatures. However, the impact of high climate sensitivity 
appears small with our approach to developing local projections for NYC. Nevertheless, more research is 
needed to better understand (1) the impact of the high climate sensitivity on the representation of key large 
scale climate processes, (2) the model physics leading to high sensitivity in the first place, and (3) the 
constraints on the planet’s equilibrium climate sensitivity. 

Description of 
Evidence 

Many models that make up the CMIP6 experiment and serve as the basis of NPCC projections of record 
are more sensitive to greenhouse gas forcing than previous generations of models, leading to hotter global 
average temperatures (Zelinka et al., 2020). This higher sensitivity is often attributed to stronger positive 
cloud feedbacks from decreasing extratropical low cloud coverage and albedo (Zelinka et al., 2020). 
Analysis by NPCC4 found non statistically significant differences between projections of record when hot 
models are removed. 

New Information 
and Remaining 
Uncertainties 

Although high sensitivity models are still within the likely ECS range as supported by evidence (Masson-
Delmotte et al., 2021), there is evidence from the paleorecord indicating that such high values are 
unrealistic (Zhu et al., 2020). New evidence from paleoclimate records and simulations may be needed to 
better constrain the newer generation of earth system models (Burls & Sagoo, 2022b). 

Assessment of 
Confidence based 
on the Evidence 

Given the analysis performed by NPCC4, there is high confidence that the projections of record presented 
in Braneon et al., (2024)are not significantly impacted by the “hot model problem”. There is medium 
confidence that the representations of all physical process relevant to the climate of NYC are not 
significantly impacted by these high ECS models. 
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Key Message 2 The high tail end of sea level rise will be governed by the future stability of the ice sheets, and in particular, 
that of the West Antarctic Ice Sheet (WAIS), with ~3 m of SLR potential if all its marine-based ice melted, 
and also that of the Greenland Ice Sheet (~7 m SLR equivalent). Troubling signs of ice shelf thinning and 
ocean warming around WAIS and an approaching temperature tipping point over Greenland raise the 
possibility of faster and higher sea level rise than projected by most climate models, increasing the risks 
associated with coastal flooding. Additional research is needed to gain a better understanding of all the 
processes governing ice sheet behavior with rising temperatures. Stakeholders concerned with long-term 
planning need to examine plausible scenarios at the extreme upper tail of the sea level rise distribution. 

Description of 
Evidence 

MISI may develop because much of WAIS lies on land below sea level, on reverse slopes that tilt toward 
the continental interior--an inherently unstable topographic configuration. An ice stream or glacier on a 
reverse slope near the grounding line undergoing MISI accelerates, calving more and more ice until the 
bed slope flattens or rises landward (e.g. Figure 3.5 in Gornitz et al., (2019; Milillo et al., 2022). A more 
controversial process is the Marine Ice Cliff Instability (MICI) in which the exposed cliff face of a high ice 
cliff (>100 m (~328 ft) above sea level) may become structurally weakened and collapse after thinning and 
removal of a buttressing ice shelf.  Furthermore, in a warmer climate, larger meltwater pools on top of an 
ice cliff during summer would propagate down crevasses and cut through ice until reaching bottom in a 
process known as hydrofracturing. Ice cliff retreat is accelerated as large ice masses calve. Several 
regions of WAIS face high vulnerability to (Marine Ice Shelf Instability) MISI. In particular, the Thwaites 
Glacier would become “unstoppable” once it passes beyond two ridges (Morlighem et al., 2020). If current 
rates of retreat persist, the Thwaites Eastern Ice Shelf could unpin from the seafloor in less than a decade. 
The collapse of Thwaites Glacier, which holds the equivalent of more than half a meter of global sea level 
rise potential, could also destabilize neighboring glaciers that hold another 3 m of sea level rise potential. 
Three other glaciers near Thwaites show rapid retreat within the last decade (Milillo et al., 2022). 

New Information 
and Remaining 
Uncertainties 

A recent study confirms the ongoing rapid retreat of the Thwaites Glacier’s grounding line, in particular, 
near a pinning point mapped in 2014 (Wild et al., 2022). New underwater surveys of the Thwaites Eastern 
Ice Shelf (TEIS) between 2011 to 2020 also reveal favorable submarine topography that promotes 
enhanced melting near the ice base and entry of warmer ocean water leading to sustained grounding line 
retreat (Schmidt et al., 2023). On the other hand, negative feedbacks, such as glacial rebound or a 
weakened gravitational attraction may mitigate the full extent of MISI (e.g. Barletta et al., 2018; Gomez et 
al., 2015). MICI may be delayed by slower retreat of ice shelves (Clerc et al., 2019), rates and degree of 
effectiveness of hydrofracturing (Robel & Banwell, 2019), and lack of evidence for an observed MICI either 
at present or in the geological past (Edwards et al., 2019).   

Assessment of 
Confidence based 
on the Evidence 

Recent ice sheet observations raise renewed concerns over the long-term stability of both the WAIS and 
Greenland Ice Sheet with continued climate warming. Glaciers and ice sheets combined are now the 
dominant contributors to global mean sea level rise with very high confidence. Further, sea level is 
projected to rise for centuries and remain elevated for thousands of years with very high confidence. 
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Key Message 3 While occurrence of extreme heat events in NYC is governed in great part by climatic events taking place 
at large spatial scales, local urbanization patterns play a key role in the spatial distribution of temperatures 
within the city. These local patterns, which include a range of factors like distribution of green spaces and 
urban geometry, play the most significant role in the generation of physical process that lead to the urban 
heat island (UHI). Moreover, extreme heat events exacerbate this intra-urban excess temperatures, 
increasing exposure to deadly heat of populations without access to adaptive measures and cooling 
infrastructure (e.g., cooling centers, tree shade). Future work is needed to assess the impact of a warming 
climate on intra-urban heat variability in order quantify the effect of climate change on spatial inequities of 
heat exposure. 

Description of 
Evidence 

The NYC UHI has been studied for decades, with measurements of urban-rural temperature differences 
going back decades (Bornstein, 1968). There is significant following evidence of the impact of urban 
surfaces on temperatures in NYC, with values often ranging between 0.5 to 5 depending on time of year 
and prevailing weather conditions (Childs & Raman, 2005; Gedzelman et al., 2003). Further, there is 
significant evidence of positive feedbacks between the NYC UHI and extreme heat events (Ortiz et al., 
2018; Ramamurthy et al., 2017).   

New Information 
and Remaining 
Uncertainties 

Although most studies have shown intensification of UHIs during extreme heat events, some have found 
no such intensification in the observation record (Scott et al., 2018). Further, there are robust projections 
of intra-urban heat in NYC that account for local physics across model ensembles and climatologically 
relevant temporal scales.   

Assessment of 
Confidence based 
on the Evidence 

Given the significant modeling and observational evidence, there is very high confidence in the existence 
and magnitude of the NYC UHI. There is also high confidence of synergistic interactions between extreme 
heat and UHIs, although the extent of these interactions remains a topic of research. 
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